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Abstract 
Among the 230 crystallographic space groups, we find 
there are more than 4000 physically irreducible rep- 
resentations (irreps) that arise from k points of sym- 
metry. These irreps map the space-group elements 
onto only 132 different images. These images are 
listed, and their group-subgroup relations are given. 
Images which are active in the Landau theory of 
continuous phase transitions are also indicated. 

Group-theoretical methods provide a powerful tool 
in solid-state physics. The irreducible representations 
(irreps) of space groups are of central importance in 
these methods. We recently (Stokes & Hatch, 1984, 
1985; Hatch & Stokes, 1984, 1985a, 1985b, 1985c; 
Kim, Hatch & Stokes, 1986) used group-theoretical 
methods in the Landau theory (Landau & Lifshitz, 
1980) of continuous phase transitions in solids. In 
this theory, a phase transition is driven by an irrep 
of the parent space group. We obtained a listing of 
all possible symmetry changes in such phase transi- 
tions to commensurate structures. To do this, we 
needed the irreps of the space groups. 

Each irrep consists of a mapping of space-group 
elements onto a set of matrices called the image of 
the irrep. Theories which describe physically realiz- 
able processes usually require these matrices to be 
real. If an image cannot be written in real form (i.e. 
it is not equivalent to a set of real matrices), a physi- 
cally irreducible representation can be formed f r o m  
the direct sum of each matrix and its complex conju- 
gate. The resulting matrices are equivalent to a set of 
real matrices. In this paper, irrep refers to physically 
irreducible representations. 

Each irrep of a space group is associated with some 
k vector in the first Brillouin zone. We have con- 
sidered all of the irreps which arise from k points of 
symmetry (points k in the first Brillouin zone which 
have higher symmetry than any other point in the 
neighborhood of k; see Bradley & Cracknell, 1972). 
There are more than 4000 of these irreps among the 
230 three-dimensional space groups. 

We sorted out the images of these irreps and found 
that there are only 132 different images. We list these 
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in Table 1. We introduce here our labeling of these 
images (Ala, A2a, B3a, etc.; this labeling is in prin- 
ciple similar to that in Gufan & Chechin, 1980) and 
also give the label used by Tolrdano & Tolrdano 
(1980) and by Mozrzymas & Solecki (1975). We have 
selected an irrep as an example of each image. Each 
irrep is identified by a space-group number, a space- 
group symbol, and an irrep label which follows the 
convention of Miller & Love (1967) (see also Crack- 
nell, Davies, Miller & Love, 1979). If the irrep is not 
real, a direct sum is indicated, showing the physically 
irreducible representation. A physically irreducible 
representation which is formed from a complex irrep 
which is equivalent to its own complex conjugate is 
indicated by, for example, P20)(P2)*. A physically 
irreducible representation which is formed from a 
complex irrep which is equivalent to the complex 
conjugate of another irrep is indicated by, for 
example, F20)/'3, where 1-'3 is equivalent to the com- 
plex conjugate of/ '2. 

Although we use the irrep labelling of Miller & 
Love (1967), the matrices we choose for the images 
are different from their choice in many cases (but still 
equivalent to their choice). An explicit listing of our 
generating matrices of these images will be given in 
a later publication. We have chosen matrices which 
give rise to the same set of invariant fourth-degree 
polynomials as those given by Tolrdano & Tolrdano 
(1980) and Tolrdano, Michel, Tolrdano & Brezin 
(1985). 

We show in Figs 1-6 the group-subgroup relations 
among the images. Solid lines indicate an actual 
group-subgroup relation for the matrices we have 
chosen for the images. Dashed lines indicate that an 
image is only equivalent to a subgroup of another 
image but not an actual subgroup for the matrices 
we have chosen. A different choice of matrices for 
the images could change some dashed lines to solid 
lines and some solid lines to dashed lines on these 
figures. 

In Landau theory, an irrep may drive a continuous 
phase transition only if it satisfies two conditions, 
called the Landau & Lifshitz conditions (Landau & 
Lifshitz, 1980). These irreps are said to be active. 
Images of the active irreps are also said to be active, 
even though irreps which are not active may also 
have that same image. In Table 1, we indicate which 
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images are active. For the active images, an example 
of an active irrep is given. 

Our results for active images disagree with 
Tol6dano & Tol6dano (1980). They missed five four- 
dimensional active images (D32e, D64b, D64d, 
D72a, and D144a) and a six-dimensional active 

image (E96k). (More details about E96k can be 
found in Hatch, Stokes, Kim & Felix, 1986, and in 
Kim, Hatch & Stokes, 1986.) Also, we do not find 
the eight-dimensional image labeled Ms by Tol6dano 
& Tol6dano. (None of the irreps of P63mc are eight- 
dimensional.) 

Fig. 1. The group-subgroup relations for the one-, two- and three- 
dimensional images. 

~ J~( 032b 

Fig. 2. The group-subgroup relations for some of the four- 
dimensional images. 

I 

Fig. 3. The group-subgroup relations for the remaining four- 
dimensional images. 

Fig. 4. The group-subgroup relations for the six-dimensional 
images. 

I 
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Fig. 5. The group-subgroup relations for the eight-dimensional 
images. 

Fig. 6. The group-subgroup relations for the twelve- and sixteen- 
dimensional images. 
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Table 1. The images of the 230 space groups 

We give our image label, the dimension (dim.) of the matrices, the order of the image (number of distinct matrices), an example of an 
irrep with that image, whether or not the image is active, and other labels used for these images in Tol6dano & Tol6dano (1980) or 
Mozrzymas & Solecki (1975). If the image is active, the irrep shown is an example of an active irrep. 

O t h e r  

I m a g e  D i m .  O r d e r  E x a m p l e  i r r ep  A c t i v e  l abe l  I m a g e  D i m .  O r d e r  E x a m p l e  i r r ep  A c t i v e  

A l a  1 1 1PI  F 1 no C l E96e 6 96 197123 N t no 
A2a 1 2 2PI  F~- yes C 2 E 9 6 f  6 96 207P432 M 5 no 
B3a 2 3 143P3 F 2 ~) F 3 no C 3 E96g 6 96 198P2t3 X l no 
B4a 2 4 18P212t2 S t 0) S 2 yes C 4 E96h 6 96 212P4332 M t ~ M a no 
B6a 2 6 149P312 F 3 no Car E96i  6 96 212P4332 M 5 no 
B6b 2 6 147P3 F~- ~) F~  yes C 6 E96j  6 96 1991213 Nl no 
B8a 2 8 75P4 X t yes C4v E96k  6 96 212P4332 M 2 ~) M 3 yes 
BSb 2 8 76P4t  At ~) A 3 no C s E192a 6 192 193P6__a/mcm L t no 
B12a 2 12 162P31mF~ yes C6v E192b 6 192 2 1 8 P 4 3 n X  s no 
B12b 2 12 197123 P2 ~) (P2)* yes Ct2 E192c 6 192 204Im3 N~- yes 
Bl6 a  2 16 91P4t22 A t no Cat , E192d 6 192 2111432 N t no 
B24a 2 24 2111432 P2 yes Ct2t, E192e 6 192 2111432 N 2 yes 
C12a 3 12 195P23 F 4 no T E 1 9 2 f  6 192 215P43m X 5 yes 
C24a 3 24 200Pro 3 F 2 yes T h E192g 6 192 205Pa3 X i no 
C24b 3 24 207P432 F 5 no T d E192h 6 192 212P4332 X t no 
C24c 3 24 207P432 M 2 yes O E192i 6 192 21414132 N I no 
C48a 3 48 221Pm3m F 4 yes O h E192j 6 192 21414t32 N 2 yes 
D8a 4 8 61Pbc_a R + 0) (R+) * yes 13-1 E384a  6 384 2 2 3 P m 3 n X  t no 
D l 2 a  4 12 218P43n R 3 ~ (R3)* yes 21-1 E384b 6 384 2 2 2 P n 3 n X  t no 
D16a 4 16 92P4t2 t2  A t ~) A 2 no 31.1 E384c 6 384 224Pn3mX 3 yes 
D16b 4 16 76P4 t R t ~ R 2 no 29.1 E384d 6 384 196F23 W ! no 
D16c 4 16 64Cmca R~ O) R~  yes 26.1 E768a  6 768 202Fm3 W i no 
D18a 4 18 150P321 K 3 ~ (K3)* no 33.1 E768b 6 768 216FT;3m W t yes 
D24a 4 24 205Pa3 R+2~, R+3 yes 49.2 E768c 6 768 209F432 W t yes 
D24b 4 24 205Pa3 R (R~')* yes 49.1 E1536a 6 1536 225Fra3m W t yes 
D24c 4 24 217143m P3 ~ (P3)* yes 44.1 F32a 8 32 l10141cdPt  ~) (Pt)* no 
D24d 4 24 204Ira3 P2 O) P3 yes 42.1 F32b 8 32 731bca W I O) (WI)*  no 
D24e 4 24 222Pn3n R 2 ~) R 3 yes 48.1 F64a 8 64 10814cm N I ~ N 2 no 
D32a 4 32 80141 N t yes 59.1 F64b 8 64 l l 0 1 4 t c d N  ! • N 2 no 
D32b 4 32 43Fdd2 L t yes 58.G1 F64c 8 64 14214t /acdPt  ~) P2 no 
D32c 4 32 22F222 L t yes 56-1 F72a  S 72 184P6ccH 3 @ (/-/3)* no 
D32d 4 32 91P4122 R 1 no 57-1 F72b 8 72 165P3cl H 3 ~]) (//3)* no 
D32e 4 32 92P412t2 R t ~) R 3 yes 52.1 F96a 8 96 202Fm3 L~ ~ L~ yes 
D36a 4 36 159P31cH 3 ~ (/-/3)* no 62.1 F96b 8 96 220143dP 3 O) (P3)* no 
D36b 4 36 150P321 H 3 0) (H3)* no 63.1 F96c 8 96 206Ia3 P1 O) P3 no 
D36c 4 36 1 6 2 P 3 1 m K  3 no 64.1 F96d 8 96 206Ia3 P2 O) (/:'2)* no 
D48a 4 48 212P4332 R 3 no 77.2 F128a  8 128 14014/racm N t no 
D48b 4 48 1991213 Pt ~ (Pt)* no F128b 8 128 1 4 2 1 4 t / a c d N  t no 
D48c 4 48 212P4332 R 1 ~ R 2 no 77.1 F144a S 144 192P6_/mccH t ~ H 2 no 
D48d 4 48 19912t3 P2 ~) (P2)* no 76-1 F192a  8 192 216F43m L 3 yes 
D48e 4 48 299Im3ra P~ yes 74.1 F192b 8 192 203Fd3 L~" ~) L~" yes 
D64a 4 64 88141./a N :  yes 80.01 F192c 8 192 210F4132 L 3 no 
D64b 4 64 122142d N t yes 81.01 F192d 8 192 219F~,3c L t 0) L 2 no 
D64c 4 64 70 Fddd L~ yes 82-01 F192e 8 192 230Ia3d P3 no 
D64d 4 64 9814122 N t yes 83.1 F 1 9 2 f  S 192 2301a3dPt  ~ P2 no 
D72a 4 72 186P63mc H 3 yes 91-1 F384a 8 384 229Fd3m L~ yes 
D72b 4 72 190P62cH t ~) (1"11)* yes 85.1 F384b 8 384 2 2 6 F m 3 c L  3 no 
D72c 4 72 163P31cH 3 no 92.1 F384c 8 384 228Fd3cL  3 no 
D72d 4 72 162P31raH 3 no 88.1 G96a 12 96 205Pa3 M I ~ M 2 no 
D96a 4 96 196F23 L 1 yes 95.1 G192a 12 192 22017~3dN t no 
D96b 4 96 21414132 Pi no G192b 12 192 206Ia3 N t no 
D96c 4 96 21414t32 P2 no G384a 12 384 2 2 2 P n 3 n X  3 ~ X 4 no 
D96d  4 96 220143dP 1 O) (Pt)* yes 98.1 G384b 12 384 2 3 0 1 a 3 d N  t no 
D128a 4 128 1 4 1 1 4 t / a m d N  + yes 101.01 G384c 12 384 2 3 0 I a 3 d N  2 no 
DldAa 4 144 1 9 4 P 6 3 / m m c H  1 yes 104-1 (3768a 12 768 209F432 W 3 ~ W 4 no 
D192a 4 192 203Fd3 L + yes 108-01 G768b 12 768 219F~,3c W t (~) W 2 no 
D192b 4 192 209F432 L 1 yes 109-01 G768c 12 768 203Fd3 W t no 
D192c 4 192 210F4132 L. yes 110-1 G768d 12 768 210F4132 W t no 
D384a 4 384 227Fd3mLSt yes 115.01 G1536a 12 1536 225Fm3ra W 5 no 
E48a 6 48 197123 P4 ~) (P4)* no G1536b 12 1536 226Fm3c W 1 ~ W 2 no 
E48b 6 48 218P6,3n X I ~) X 2 yes Lto G1536c 12 1536 226Fm3c W 5 no 
E48c 6 48 198P213 M t ~ M 2 no G1536d 12 1536 227Fd3m W t no 
E96a 6 96 176P63/m L 1 no H192a  16 192 219F43cL  3 ff~ (L3)* no 
E96b 6 96 178P6t22 L 1 no H384a  16 384 226Fra3cL I ~ L 2 no 
E96c 6 96 217143mP4 ~) (P4)* no H384b 16 384 228Fd3c L t • L 2 no 
E96d 6 96 2 2 3 P m 3 n X  3 yes L 9 K1536a 24 1536 228Fd3c W I ~) W 2 no 

O t h e r  
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Abstract 

A new joint probability distribution of normalized 
structure factors is derived for equal-atom structures 
in space group P1. From this general distribution, a 
series expansion, the conditional joint probability 
distribution of the quartet phase sum is obtained, 
when restrictive conditions among the reciprocal vec- 
tors are imposed. The main difference from existing 
quartet distributions is the possibility of enclosing 
higher-order terms to any given order of N, although 
an approximation employed in the derivation limits 
the number of them considerably. The higher-order 
terms present are easily employed in the series since 
the determination of their explicit appearance has 
been automated: a computer program derives the 
terms up to a desired order and stores them in a coded 
form. In general, the incorporation of selective terms 
up to order N -3 appears to yield sufficient conver- 
gence. Only high ILl values or a low N value may 
necessitate the use of higher-order terms. Test results 
show that, in contrast to results from the quartet 
distributions of Hauptman and Giacovazzo, system- 
atic estimation errors are hardly present, while 
absolute estimation errors are reduced as well. 

1. Introduction 

Results of Simerska (1956) and Hauptman & Karle 
(1953) indicated that the four-phase structure 
invariant ~4, 

04 = ~n, + ~.2 + ~H3 - ~H, + H2+ H3. (1) 

also called the quartet phase sum or simply quartet. 
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lies more probably near zero for larger values of 

E4=IEn, En~En~Eo,+.~.H3IN -~ (2) 

However, in general the triplet relationship 

~3 = ~OH I -~- (~"2 -- (~HI+ H2 (3) 

will be estimated more reliably because the E 3 values, 
which determine the reliability of the triplet estima- 
tion, are in general larger than the E4 values since 
they depend on N -1/2 only. Therefore, quartets were 
not used as such for practical purposes. This changed 
when Schenk (1973a) pointed out that quartets can 
also be formed by summing two triplets with one 
phase in common and he showed in this way that 
quartet (1) depends not only on IE.,I, If.2l. IE.3l and 
IE,~,+..÷.~I but also on the so-called cross terms 
IEH,+-2I, IE-,+-3I and IE..+.31. He argued that the 
larger the E 4 and cross-term magnitudes the more 
probably I~/4 lies near zero. Another important result 
of the introduction of this cross-term principle was 
that quartets with small cross-term magnitudes could 
be predicted to lie near 7r (Schenk & De Jong, 1973; 
Schenk, 1973a, b; Hauptman, 1974; Schenk, 1974). 
This renewed interest in quartets and the cross-term 
principle led to the development of improved joint 
probability distributions (j.p.d.'s) for estimating the 
quartet phase sum (Hauptman, 1975a, b, 1976; 
Giacovazzo, 1976a, b) and initiated the development 
of the neighbourhood principle (Hauptman, 1975b) 
and the representation theory (Giacovazzo, 1977). 
The latter theories identify structure factors upon 
which the phase sum of a structure (sem)invariant 
most sensitively depends. 
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